Optimizing the Use of Clickers in the Classroom

Klaus Woelk
Associate Professor of Chemistry
Center of Educational Research and Teaching Innovation (CERTI)
Important Considerations

• What role should testing play in the learning process?

• How can tests create a real dialogue between ourselves and our students about what students do and do not understand?

• How can we avoid using tests to simply punish or reward cramming?
Some suggestions

• Use frequent, small quizzes and tests rather than monolithic once-or-twice per-term exams.

• Give students instant feedback on their performance (for example, putting the correct answers up on an overhead after all the tests are turned in).

• Consider allowing students to take quizzes first as individuals and then the same quiz again in groups.
Writing Multiple-Choice Questions

http://tep.uoregon.edu/resources/assessment/multiplechoicequestions/importantconsider.html

• Multiple-choice questions are easiest to write when there is a definitively right or wrong answer.

• Multiple-choice testing of more interpretive material should always include an appeal mechanism in which students can and must make a written, evidence-supported case for their answer.
Taxonomy of Clicker Utilization

• 6 basic categories
 – 3 categories to test the current standing or stipulation of students
 • Attendance
 • Preparedness
 • Interest
 – 3 categories to probe into the learning progress
 • Learning
 • Understanding
 • Applying
Attendance:

- Taking and honoring attendance reduces the number of students dropping out or finishing with low grades (D’s and F’s).
- Doing it with clickers is particularly efficient in large entry-level classes.
What does the term “mole” refer to?

1. A small rodent digging through our backyards 16%
2. Avogadro’s number 12%
3. The number 6.02214×10^{23} 40%
4. Loschmidt’s number 8%
5. A TV reality show of physical and mental challenges 4%
6. A Mexican hot sauce (from the Aztec word “molli”) 16%
7. A small dark spot on the skin (melanocytic naevus) 4%

Good icebreaker: no wrong answer!
Preparedness:

- Clicker quizzes on assigned reading assure preparedness for the topics covered in class.
- Well-picked question and appropriate grading are essential.
The first person to survive plunging over Niagara Falls in a barrel was a 63 year old woman. Annie Taylor did it in 1901, and afterwards was quoted as saying: “No one ought ever do that again.”
Motivation:

- Polling on common knowledge or opinions (even on controversial issues or common misconceptions) creates initial interest and motivation.
- It is crucial that students have developed trust in the technology, especially, if responses are collected anonymously.
Question before teaching about concentration:

What *mass of salt* (NaCl) is found in the blood stream of a normal human? Please estimate!

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%</td>
<td>1. 50 mg</td>
</tr>
<tr>
<td>27%</td>
<td>2. 500 mg</td>
</tr>
<tr>
<td>20%</td>
<td>3. 5 g</td>
</tr>
<tr>
<td>20%</td>
<td>4. 50 g</td>
</tr>
<tr>
<td>10%</td>
<td>5. 500 g</td>
</tr>
<tr>
<td>3%</td>
<td>6. 5 kg</td>
</tr>
</tbody>
</table>

Because students like to know whether their estimate is close or completely off, they will follow the subsequent calculation on the chalkboard more closely.
Learning:

- On-the-spot assessment improves student alertness and offers immediate feedback on the learning progress to both student and instructor.

- Repeating a question or posting a similar one can be used for progress evaluation and student satisfaction.
Are you really testing learning?
The true shape of the Earth is best described as a

1. … perfect sphere
2. … perfect ellipse
3. … slightly oblate sphere
4. … highly eccentric ellipse

By elimination of choices (statement “perfect” is too strong and adjective “highly eccentric” appears unscientific), students will choose the correct answer even without conceptual understanding.
Given the v - t graph to the left, determine the particle's acceleration when $t = 3$.

1. -1.67 m/s^2
2. -5 m/s^2
3. -10 m/s^2
4. -15 m/s^2
5. none of the above
Understanding:

- Asking about a subject matter in different ways provides insight into students’ understanding.

- Active learning is fostered by encouraging peer discussion and instruction during the response time or by a repeated poll if the responses are split between different answers.
At which location would an observer find the greatest force due to the earth's gravity?

1. The north pole
2. The middle of everywhere
3. The tropic of Cancer (23.5° N)
4. The equator

Answers 2 is obviously wrong (funny), answer 3 doesn’t make sense with respect to the concept. Answers 1 and 4 are opposites with respect to the earth’s gravity and thus are good choices to test the conceptual understanding.
Sulfur tetrafluoride is a polar molecule.

Students like the wrong answer, because they usually know the shape of CH₄ or prefer symmetry. Only conceptual understanding guides them to the correct answer.
Applying:

- Conceptual knowledge and mastery is created when clicker questions branch into areas beyond the material covered in class or in the textbook requiring the application of newly taught concepts to real-world or open-ended problems.
To facilitate the conversion of $\text{H}_2\text{S}_2\text{O}_8$ to yield S_2H_4, you must add as a key reactant ...

1. ... a strong acid.
2. ... a weak acid.
3. ... a base.
4. ... an oxidizing reactant.
5. ... a reducing agent.
6. ... a polar solvent.
7. ... a non-polar solvent.
8. ... nothing (the reaction will occur by itself).

... anything could apply.
Only conceptual understanding will help to find the correct answer.
Open-ended Problems:

What is a valid Lewis Structure for the cyanate ion?

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>37%</td>
<td>(-\text{N} = \text{C} = \text{O})</td>
</tr>
<tr>
<td>2%</td>
<td>(:\text{N} \equiv \text{C} = \text{O}:)</td>
</tr>
<tr>
<td>6%</td>
<td>(\text{N} - \text{C} - \text{O}::)</td>
</tr>
<tr>
<td>20%</td>
<td>(\text{N} - \text{C} \equiv \text{O}::+)</td>
</tr>
<tr>
<td>27%</td>
<td>(:\text{N} \equiv \text{C} - \text{O}:)</td>
</tr>
<tr>
<td>9%</td>
<td>(\text{N} - \text{C} = \text{O}:)</td>
</tr>
</tbody>
</table>

There are multiple correct answers! Announcement at the end of lecture: First question next lecture will be about the relative stability of the valid answers.
Using Open-ended Problems

Click I will be here
Click I will be prepared
Click I will be interested
Summary

• Clickers are found in many highschool, college, and university classrooms

• They provide more than just immediate feedback to instructor and students

• Six basic ways of utilizing the power of clickers
 • Attendance
 • Preparedness
 • Initial interest and motivation
 • On-the-spot assessment (formative assessment)
 • Active learning (peer discussion and instruction)
 • Problem-based, deep learning (mastery of concepts, applications to real-world, or open-ended problems)